
Lazy Evaluation

CS 1025 Computer Science Fundamentals I

Stephen M. Watt
University of Western Ontario



Lazy Evaluation

• Sometimes you might or might not use a value that is expensive to compute.

• Why compute it if you don’t need it.

• Sometimes you might need it, but not right away. 
(So you could wait until a processor is free...)

• Why do today what you can put off to tomorrow?

(Isn’t this the opposite of what you’d expect me to say?)



Evaluation Order
• Sometimes a programming language doesn’t specify evaluation order.

• “Applicative order” evaluates the arguments before calling the function.
This is “eager”.   Used in most programming languages.

• “Normal order” evaluates the arguments just before they are used
inside a function.
This is “lazy”.  Used in a lot of theory and some programming languages.



Lazy Evaluation in Scheme

• “delay” creates a promise ... An object that may be evaluated later.

• “force” causes the  promise to be evaluated to give a value.

• Example:

(define do-it (lambda (a b) 
(write “Hello”) (newline) (+ a b)))

(define five (delay (do-it 2 3))) ; do-it not called yet
<#promise>
...
...
(define n (force five))           ; do-it called here.
“Hello”
5



Another Example
(define big   (lambda () (write "big")   (newline) (+ 1 1)))

(define hairy (lambda () (write "hairy") (newline) (+ 2 2)))

(define comp  (lambda () (write "comp")  (newline) (+ 3 3)))

(define l (cons (delay (big))

(cons (delay (hairy))

(cons (delay (comp)) ’()) ) ) )

l

(#<promise> #<promise> #<promise>)

(length l)

3

(force (cadr l))

"hairy"

4

(force (cadr l))

4



Delay and Force in Scheme

•delay must capture an expression so it can be evaluated later.

It can be implemented in terms of a macro which puts the 
expression inside a lambda.

The resulting “promise” object would then refer to this function.

• force must be able to tell whether a promise needs to be 
evaluated (and then do the evaluation) or 
whether it simply contains the result (and then return it).

• Let us represent a promise, then, as a pair whose car is 
either #t, indicating the cdr is the value desired 
or #f, indicating that the cdr is the lambda to compute the value.



Delay and Force in Scheme

• Then delay and force can be implemented as

;; A Scheme macro:  (delay foo) -> (cons #f (lambda () foo))
(define-syntax delay (syntax-rules ()

((_ expr) (cons #f (lambda () expr))) ))

(define force (lambda (p)

(if (car p)

(cdr p)

(let ((x ((cdr p)))) ; Call the fn in p’s cdr

(set-cdr! p x) (set-car! p #t) x ) ) ))



Lazy Lists

• We define the basic operators:
lazy-cons   lazy-car   lazy-cdr  lazy-null?

(define-syntax lazy-cons (syntax-rules ()

((_ <car-expr> <cdr-expr>)

(delay (cons <car-expr> <cdr-expr>))) ))

(define lazy-null? (lambda (ll) (null? (force ll))))

(define lazy-car   (lambda (ll) (car   (force ll))))

(define lazy-cdr   (lambda (ll) (cdr   (force ll))))



Lazy List Example
(define say (lambda (a)

(write "Say") (write a) (newline) a ))

(define ll (lazy-cons (say "My")

(lazy-cons (say "car")

(lazy-cons (say "drives!") ’()) )))

ll

#<promise>

(lazy-car ll)

"Say""My" <-- Printed as side effect

"My"      <-- Value

(lazy-car ll)
“My” <-- Value

(define b (lazy-car (lazy-cdr ll)))

"Say""car" <-- Side effect

"car"      <-- Value



Infinite Series!
• This uses some math.

We will eventually use the following facts:

sin(x)  = x – x^3/3! + x^5/5! – x^7/7! + ...
cos(x) = 1 – x^2/2! + x^4/4! – x^6/6! + ...

• We can represent an infinite series as a lazy list of coefficients.

E.g. sin(x) would be the lazy list of

0   1   0   -1/6    0    1/120   0   -1/5040   ...



Making Infinite Series
• This function makes a series, given a function to compute the i-th coefficient.

(define series-from-coef-fun (lambda (f)

(define make-tail (lambda (i)

(lazy-cons (f i) (make-tail (+ i 1))) ))

(make-tail 0) ))

• Note the inner recursive function has no if statement, and so 
has no base case!!!

• We use lazy-evaluation to delay the infinite recursion when 
making an infinite list.



Printing Lazy Series
(define series->string (lambda (s n)

(let ((r ’())) ; Collected parts in reverse order

(do ((ll s (lazy-cdr ll)) ; Current tail

(i 0 (+ i 1))) ; Current exponent

((> i n)) ; End when i > n.

(let ((ci (lazy-car ll))) ; Current coefficient

(cond ((> ci 0) (set! r (cons " + " r)))

((< ci 0) (set! r (cons " - " r)) (set! ci (- ci)) ) )

(if (not (= ci 0)) (begin

(set! r (cons (number->string ci) r))

(if (> i 0) (set! r (cons " x" r)))

(if (> i 1) (set! r (cons (number->string i)(cons "^" r)))) )) ))

;; Now the parts are collected, finish up.

(if (null? r) (set! r ’("0")))

(set! r (cons " + ..." r))

(apply string-append (reverse r)) ) ))



Lazy Series Example

(define s (series-from-coef-fun (lambda (i) (* i i)) ))

(series->string s 4)

" + 1 x + 4 x^2 + 9 x^3 + 16 x^4 + ...”



Question: How to Implement + ?

• How would you go about writing an addition function which 
makes a new series by adding two existing ones coefficient 
by coefficient?



Answer
• This program adds series:

(define series-+ (lambda (sa sb)

(lazy-cons (+ (lazy-car sa) (lazy-car sb)))

(series-+ (lazy-cdr sa) (lazy-cdr sb)) ))

• Again, note that with lazy eval we can have a recursive function with no base case.

• Examples:
(define s1 (series-from-coef-fun (lambda (i) (* 2 i)) ))

(series->string s1 4)

" + 2 x + 4 x^2 + 6 x^3 + 8 x^4 + ...“

(define s2 (series-from-coef-fun (lambda (i) i) ))

(series->string s2 4)

" + 1 x + 2 x^2 + 3 x^3 + 4 x^4 + ...“

(define s3 (series-+ s1 s2))

(series->string s3 4)

" + 3 x + 6 x^2 + 9 x^3 + 12 x^4 + ...”



Another Example: Multiplication
• The coefficient of xn in the product s1 × s2 is given by

coef(s1,n)*coef(s2,0) + coef(s1,n-1)*coef(s2,1) + ... + coef(s1,0)*coef(s2,n)

• We will need a program to find the i-th coefficient of a given series:
(define series-coef (lambda (s i)

(if (= i 0) (lazy-car s)

(series-coef (lazy-cdr s) (- i 1)) ) ))

• The program for the n-th term of the product is:
(define series-*-term (lambda (n s1 s2)

(do ((i 0 (+ 1 i)) (sum 0))

((> i n) sum)

(set! sum (+ sum (* (series-coef s1 (- n i)) (series-coef s2 i)))) )))

• The program for the product is then
(define series-* (lambda (s1 s2)

(define make-tail (lambda (i)

(lazy-cons (series-*-term i s1 s2) (make-tail (+ i 1)) )))

(make-tail 0) ))



Tying It All Together
• Let’s test our package by seeing whether   sin^2 (x) + cos^2 (x) = 1

• The functions below calculate the coefficients of sin and cos.

(define fact (lambda (i) (if (= i 0) 1 (* i (fact (- i 1))))))

(define sin-coef (lambda (i)

(if (even? i) 0 (/ (expt -1 (/ (- i 1) 2)) (fact i)))))

(define cos-coef (lambda (i)

(if (odd? i) 0 (/ (expt -1 (/ i 2)) (fact i)))))

• See that the series for sin and cos are right:
(define s (series-from-coef-fun sin-coef))

(series->string s 8)

" + 1 x - 1/6 x^3 + 1/120 x^5 - 1/5040 x^7 + ...“

(define c (series-from-coef-fun cos-coef))

(series->string c 8)

" + 1 - 1/2 x^2 + 1/24 x^4 - 1/720 x^6 + 1/40320 x^8 + ...”



Tying It All Together
• Compute sin^2+cos^2.

(define sscc (series-+ (series-* s s) (series-* c c)))

(series->string sscc 10)

" + 1 + ...“

(series->string sscc 100)

" + 1 + ..."


